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Symbolic methods Cl, 21 are used to construct homogeneous solutions for the 
problem of bending of a plate previously deformed in tt$ plane. A model of 
neo -Hookean material is employed, and this is famd useful in doaorlbtng 
resin-like materials. Inspection of the characteristic equation shows that a 
preliminary application of a load changes substantially the character of the 
spectrum of the homogeneous solutions. Analysis of the penetrating solution 
which is an analog of the L&e’s biharmonic solution in the theory of unstress- 
ed plates, attests the valtdity of the Kirchhoffr kinematic hypotheses for a 
thin plate and of the classical Saint Venant’s equation of stability of plates 
uuder the condition of small initial &eases. 
The homogGncats solutions obtained can be used, with the help of the asymp- 
totic method [S] to investigate, in particular, the problems of stability of thick 
plattr when the conditions smfled at the side surface are arbitrary. 

I. Conrtructfng the homogancou, rolatfona, Letuscon- 
sider a plate made of an incompressible neo -Hookean material subjected toanfnitial 
deformation of the form 

Yl = h, Y% = &, ys = h-x, (1.1) 

where 5 haconstantand =a, B,(k=U,3) are Cartesian coordinates before 
and after the dermormation respectively. Such a deformation is realised in a plate 
of arbitrary form, in its plane, when its side surface is under a uniform load. A small 
bending deformation is superfmpoaed on this deformation, and the bending deformation 
is described by the following equations [4E 

D”u~ + UiX + h-V*p = 0 (i = i, 2) (1.2) 
D=w + wm + hap’ = 0 

a,~, + azuz + hw = 0, D* = a,* + 48 

Here ur, ua and w are the components of the vector of additional translational dis- 
placements in the xl, x%, x8 = 2 coordinate system; a prime denotes differen- 
tiation wfth respect to s; ai (i = i ,2) is the differential operator in xi and p 
b an unknown function ofthecoordinatea appearing as a result of the incompreaaibtl- 
ity of the material. The last equation of (1.2) expresses the condttion of incompress- 
ibility. 

The bumdary carditions at the facer Z = f h. of the plate upres8 the absence 
of an additional load and have the form [4] 
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u1’ + Pi$w = 0 (i = 4, 2), 2w’ + vp = 0 (1.3) 

In duivfng (1.2) and (1.3) it wu amused that in the initial homogeneou deform- 
ed state the stress a, = 0. The stress acting in the plane of the plate is gfven in 
terma of the coefficient A by the formula ( G is the shear moduhu of the material) 

a = G (A2 - A-4) (1.4) 

Integrating the ayatem (1.2) with bcmndary co&Motu (1.3) with help of the symbol- 
ic method [l, 23, we obhln the folkwing upre&o~~ for the di@acemant componenb 
and the hnctioa p: 

3 

U( = z hk%k tf =i,z), W=$B.x.. p= fickxk (1.5) 

k-1 k=l k-1 

&IC Alk, &, c,(i = 1,2;k = 1,2,3) ~lZ~dtfk6fkthlOpCd4XSOfill- 
finite order In xl, x, with cambnt coefflclenb, and Xl, x3, xa denote an arbitr- 
ary triad of solutlam of the equation Qx =o whew! Q irthcopemtordeterminallt 
Of the FobLtm (1.2). (1.3). The Operators Q, AIL, Bk and ck an#vtnbyt& 
following expre88iarm (y s A-3): 

Q = hD*Q, cos hD 

A,, = hz PAnQ~ + Y~YWT), A,, = hzr,y2@,T 
43 = ~~1~442 h242A23 - WA,) 

4 = h~,v%An WW2, - ~2An4,) 

B3 = ~142 (v242Arr - W4AJ 

c, = --2hzy’~,D’QW23, C3 - -_ryhy,D’A=,,43 

Q, = -_yl (~*~&A21 - WW,,), A = (1 - y2)-’ 

YO = 1 + v”t T = 2A11 (AAs - 2&A,) f YA,&A,, 

Al1 = P (hD, n / 2), A,, = P (n, hD), AIs = P (J), R / 2) 

Al, = P (n, Zo), AtI = P (hyD, n I 2), A,% = P (n, hyD) 

A23 = P (zyD, n / 2), A24 = P (n, zyD) 

P (2., y) = 5-l sin x + co9 y 

and &k, Ba and C, can be obtained from AIk, B, and C, by e the 
sltbtibtlal a, -a,. 

Wenotethatwhen y-1, Le. whantbinitLaldefcmuti~Lrull0vcd. the 
operator Q becomes an operator determinant of the theory of bending of an UJMLWP 
ed plate [l] (where Rdmoa’r ratio sixmld be uudc ewal to I/, since the material 
il incompre&bleL 
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We seek the solution of the equation Qx = 0, as in Cl], in the class of funct- 
ions satisfying the Helmholtz equation 

We use the following equation to determine the corresponding values of the para- 
meter a : 

.;zp [(I +y3aoosa-y--4yacosay~]~ 0 (1.6) 

and, in what follows, we shall call it the characteristic equation. In the limit as 
y -t f , this equation becomes the known equation Cl] 

sin 2u 
2a%osa(1 -7) = 0 (1.7) 

Obvioualythezeraaofthecoaine a,=n(2t-l):2,t=O,fi,f2,.. 
. . . . are roots of both (1.7) and (1.6). However, if (1.7) has a quadruple zero root, 

then for (1.6) this root will only be a double root, Below we shall show that equation 
(1.6) has two nonzero roots differing from each other only by the sign, both tending 
tozeroas y-+1, both real when 0 < y < 1 (pretensioned plate), and both 

pure imasinary when I< Y < “rfr z 3.333 (precompti plate). The value 
Y = Y* is a rdngularity, and the roots tend to in5nity along the imaginary axis as 

Y+Y** Let us denote the roots belonging to the closure of the fix@ quadrant of 
the complex plane by as,. Thentheotherrootwillbe-CZs. Wedenotethere- 
maining roots of (1.6) by a,, q = 1, 2, 3 ,. . . (the method of numbering to be 
given later). Since the roots are distrfbuted symmetrically over the complex plane, 
it is sufffcient to consider the solutions of ( 1.6) found in the fimt quadrant. Since there 
are three groups of roots of the characteristic equation, we can construct in the probl- 
em under consideration, three types of homogeneous solutions. 

The penetrating solution. Assumingin (1.5) x1 = xS = 0, 

X8 = - 9, where the functim 9 satisfies the equation 

we obtain the following representatian for the penetrating tolutfOn: 

ui = hyf;artP + haA (E) &D%~J (i = i,2) 

W = -S+h2B(6)P$, P =hC(c)D%j 

A (5)= a,-‘M f(i + v*) Cos cc, sin ccoy6 - 
2y co9 a, rsin cc061 - ‘ya,-26 

(1.9) 

R ( r;) = M [(I + Y2) cos 010 cos a, y S - 2y2 cos a0 y cos a0 g] + a,-* 
c (0 = ha-’ o (1 i- Y”) cos 2ao sin a,yC, M = aoe2 (~2 - I)-’ cos a, 
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Here g= z/h ~a~rn~~~~~~t~ Wenotethatwheu 
y --t 1, the equation (1.8) becomes biharmoaic. 

The vertical solution. Ifthefunctfao Bl(;1;,q) satisfies the 
equation 

lPB, -++o, t-1,2,3 ,... 

then, luing(l.5) we am wdte the vortfcal soltaxl fu the form 

10 4) 

221 = ha xl Ft (S1 Wb us = - hs c Ft (0 W,, w = P = Q Il. 10) 

F, (E) :& (- 1)‘+* (1 - yq)-%,-?,os sty .sin 0~6 

Potential solution. AssumingiD Q= -cp/c~ao, x1,= 

xs = 0 whexe the lkncuon c, (q, z*) satisfies the equati4S 

PC,--&, =o, q=l,2,3,... 

Below we shall show that the set of all potential solutions (1.11) can be separated 
into two sub&s. The solutions beWging to the fiat &set have no analogs in the 
theoiy of ua&#sed plates, WWe tk folkwing asserUm hoid~ for the second s&et 
asweUasforthepeWt&&g (1.9~Pnd~~(~~lO)LOttfOBIwheny-t1, the 
above solutions become the potentfal, biharmonk and vertical soWions, reapeetively. 
of the theory of unstressed plates, with the PoWonllFoMo -1 to ‘IV 111. 

2. Investigation of the chrractatirtic s4uatioa We 
reduce the cbaracterisMe equaMoa (I. 6) to the form f2.1) ox (2.2) Iq@@6t@ fhe 
factor C? coa a ) 

P, (y) sin a (y + 1) + PI (y) sin a (y - 1) = 0 (2.1) 

P, (y) = (p - 39 - If - 1) / (29 + 2yh P, (Y) = PI t-9 
p, (y) I[&W*1) _ &~Cv+l)] + p, (y) [@(Y-l) - f+@-~)] = 0 (2.2) 
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Since the value y < 0 has no physical sense, it is sufficient to consider the equat- 
ion (2.1) for y > 0 . The exponential multiplier in the left hand side of (2.2) is 
an almost periodic function with a bounded spectrum [S]. Hence the set of roots of 
(2.2) has the lfollowing properties: 

1) for every fixed y # 1 all roots lie in the strip1 Im a 1 < Cy, C, = con&; 
2) for every y # 1 the set of roots forms an almost periodic point set; 
3) the following representation holds for the roots: 

ak = nk (1 + y)-’ + ‘Py (Ii), k = 0, f 1, f 2, . . . (2.3) 

where v~y (k) is a bounded function assuming complex values. 
It can be confirmed that when y = f/s is rational, then allsolutions of(2.2) 

can be written in the form 

++a)k+m = --‘lzsiIn)t,I+l/ssarg~t,+nks 

m = 0, 1, 2, . . . . r + s - 1; k = 0, *I, ~2, . . . 

(2.4) 

where t, are solutions of the equation 

P, (r / s) tf+s + P, (r / s) t’ - P, (r / s) t” - P, (r / 5) = 0 (2.5) 

Thus, in the case of rational y the set of solutions of (2.2) separatea into a finite 
number of series. It was established in [7] that this also occurs when y are irrational, 
and from the geometrical point of view it makes more sense to carry out the numbering 
according to the se&a, as in (2.4). than in the order or increasing real parts as in 
(2.3). 

Theorem l. When y#l, Eq.(2.1)hasanenumerablesetofreatroots. 
P r o o f. When y is rational, the assertion is obviaas, since equation (2.5) has 

aroot t= 1 forany rand s . If y is irrational, then it is sufficient to con- 
sider the function f (y, a) = Pi (y) sin a (Y + 1) + P* (y) sin a (Y - 1) 
onthesequenceofpointsoftherealaxis Q=Zk(y -I)“, k= 1, 2,3... . 
We hpve f (y,. ak) = P, (y) (- 1)k sin. 12nk (y - 1)-l]. Since y is 
irrational, the quantity 2n (y - 1)-l cannot coincide with any of the sine periods. 
Therefore it can be shown that the change Of sign in the sequence f (y, ak) takes 
pIace an even number of times. Since the function f (y, a) is continuous, it has 
an enumerable set of real zeros. 

The value y* mentioned above represents a unique real zero of the function 
pi (Y). 

Theorem 2. If O(y(1(caseofpretension)or y>y* (caseofa 
strong, or a very strong precompression), then equation (2.1) has no purely imaginary 
roots. If 1 < y < y* (case of a moderate precompreasion), then (2.1) has two 
purely imaginary roots differing only in sign. 

P r o o f. The problem of whether (2.1) has purely imaginary roots can be reduced 
to that of elucidating the existence of real roots of the equation 
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cp (x9 Y) = 0 (Y) 
cp (5, y) = th (yd th-‘s, Q (y) = 4f (1 + r2)* 

(2.6) 

We have 0%’ = (T sh 2x - sh 2yz) / (2ch* yx sh’x). 
Itcanbeeatabliahdthat (&‘(x,y)<O when y>l andcP,‘(x+y)>O 

when y < 1. Consequently, if y > 1, then cp (LIT, y) decreasea monotoncusly 
from ytolaaxincreaaes from zero to co , and increaaea monotonously from 
y to 1 when y<l. It can further be shown that for every y > 0 the inequal- 

ity 0 (y) G y hold8 (the equal sign oppliea when y = i). Since (p (5, y) > 
ywhen y<1 and x>O, and 0 (7) < y, the equation (2.6) haa no poait- 
ive zenaa when y < 1 (and by virtue of the symmetry of cp (x, y) in x , it hu 
no negative zero, either). Moreover, computing the derivative a’ (y) we can can- 

firm that @ (y) increaaea monota~cualy in the interval 0 < y < fl and de- 
creases monotonaraly in the interval )/kyc=b The equation CD (y) = 1 
has two roots, y=l and y=y*. Sin& cp(x,y)>iwhen y>i, there- 

fore(2.6)haanorealrootawhen y>y*. For lCy<y, wehavc i<@(y) 
< y. Since the function cp (x, y)decreaaes mo nomnoualy from y to 1, the equation 
(2.6) haa a single positive root. Thitfmplier that (2. U haa, for 1 c y c yr pactly 
two purely imaginary roots differing only in sign. 

Corollary. If 1 CY < Y*, then Eq. (2.1) haa an enumerable set of 
compti roota. The proof follows fEom the exitence of purely irnaglnary roota and the 
property (2) of the set of roots of (2.1). 

We note that the appeonsce of purely imaginary roots of the charaeteriatic equat- 
ion when the plate is under initial comprcsaion, ia not accidentaL Since the imagin- 
ary roots generate homogureara solutions acillating with respect to the coordinates 

51 and 2% and they do not decay, if follows that the plate compreaaed in ita plane 
can luse ita rtLbfliQ throu& bembg. The special value A* = yG’8 of the initial 
deformation parameter appearing in the previous diact&ona coincidea with the mggd- 

tude of the initial compreaalon under which an arbitray thick plate with a sliding 
clamp along the aide at&ace will Lee ita stability I4.l. 

We ahall call the value y0 of the parameter y the multiple point of (2.1). provi- 
ded that (2.1) haa repeated roots at y = y. . 

Theorem 3. If y isarbitrary. Eq.(2.1)hatnor~ofmultfptidtyMgher 
than two. If y > 1, then (2.1) haa no daiblc roots dther. The a& of multiple 
pointa of (2.1) is an enumerable sub& of the segment CO, 11, is dense everwhere and 
coincides with the set of all zeros of the functions ym, g (y) 

Y m, k (7) = (Y - 1) S~CCOS q1 + (y i- 1) amos q2 + 2% (ky - m) 

17% + 1 v2+ 1 
q1 =-- 

cy+i)P,(y) ’ q2= (V-l)~2(Y) ’ 
PI>l~l~ km>0 

where k and m are integera, on tire segment [O. 1J. Evcly functh Ym, k(Y) is 
monotonous on this segment and haa on it a unique Zero Ym, k for Which the fafbwi% 

inequality holds: 
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41ml-3 41m1+3 
4lkl <%n,k< 

4lkl 

Every multiple point ym, t has a corresponding pair of real double roots fa,, k, 
a,, a > 0. Using the perturbation theory [SJ we can obtain a solution of (2.1) 

near the point (Ym. 6 am, kf 

a = am,k f c&'$ 6 = y - ym,k 

cc m, k = f1 d- rm, k)-’ si@ (k) in @ -t m) + twos q1 (yrn, k)] 

c = (2 (1 - y:, 3-l f &m,kh f*Trn,k)g@ (k) + Ls (Ym, k)l)f” 

The proof is omitted. 
In studying the asymptotic behavior of the roots of (2.1) at the points y = 1, 

Y = Y** Y =O,y= a3, it is expedient to adopt a method of numbering thk roots 
different from that used in (2.3) or (2.4). We have the following asymptotic formul- 
as. Forthecase g+i wehave 

ark-_r (I’) = nk (y - 4)” + ek (Y), k = 1, 2,3, .*e (2.7) 

where er (Y) is a bounded function, without a limit as y-F 1. Thepi3wtial 
Solntianr carretponding to the rOO& Chk-r have no analoga in the theory of mutress- 
ed platea, and they have no limit values when y --t 1 . 

Using pertubatioa theory 183 we obtain the followlag formulas: 

ae = (i - Y*)” jj& A& (1 - Y’)’ 

A0 = p/2, Al = 13Jm80, A, = 424qm44800, . . . 

asa s $ AB,, (y” - 11”, k = 1,2,3, . . . 
n-0 

Akl = -ekAko / 4, AB = &‘d;,, (12 + i%,’ + St,‘) t 48 

&a = 6,-%t,, (td” + 5tk8 - 5t$ - 53t,’ - 71 tr’ - 27) / $92 
ek = 1 + b2 

(2.8) 

(2.9) 

Here AN are the roots of the equation sin k = k%, tk = ctgAk,,. We can 
find dn~ using the asymptotic formula given in 191. Moreover we can show that 
the following recurrence relatlons hold for the coefficients A k and A kn t 

k--s 

dk-1 = s 3 &+-$-~&Ax-n-l +$~~,(bAk+z+dk-,+ 

-1 ==o 
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#lk z - Are (4 sin2 Am)% B:, 8 = x 
ilfi*...+$pa 

&i&hs . . . An, 

B:s - 2 &,&, . . . 
t,+r+ ..+i,ln; $#I%, t-l,% . ..ts A%8 

Numerical analy& rhows that the euor given by tha formula (2.8) when three co- 
efficients are taken into accomt an the segment 0.55 < y < 1.35 , does not ex- 
teed 0.59;. For k = I,2 the formulas (2.9) (also with only three coefficfcnts 
takcaintoaccomlt)gfvesanemorimteac~& at 0.8 Q y < 4.2 , 0.5% 
fcrthemalpartand 3% fotthetmrgiaarypart. 

Case y-+y* 

atk-1 = w (nk - q sin 2Yrk 0) + 0 (y - y*)‘, 0 = (y--l)-’ 

k = 1, 2, 3, . . . , . . . 

aa& = nk - Vri (in 1 q 1 F p@flkv) + 0 (I Y - Y* p*), Y < Y* 

%k = n (k + I/,) - ‘lsi (h 1 q 1 - /3e*n(rk+1)v) f 0 (1 y - yih j”F*) 

0 > Y* 
p = (4” - 1) )q/‘p-‘, k = 0, 1, 2, . . . 

Case y-t0 

a¶k-l = y-' Ink + 0.5 (i - q)l 3 

ark = n (k + ‘1%) + (q - i) [(2k 
0, 1, 2, . . . 

Case y-00 

0 (y4), k = 1, 2, 3, . . . 

+ 1) nyl-’ + 0 (y% k = 

asbl = a&y-z (y + 1 - q) + 0 (y-3, k = 1, 2, 3, . . . 

Cttk = n (k + l/s) + y-$4y), k = 0, 1, 2, . . . 

(2.10) 

( 2.11) 

(2.12) 

(2.13) 

(2.14 

(2.15) 
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where Irk (y) is a bounded COr’qdCX function and pk (y) +G 
In the formulas (2.10) -(2.X) we have cl = P, (y) / P, (y) . 

when y3 00. 

The asymptotic formulas (2.10) -_(2.15) give good accuracy and can be used as 
starting approximations to obtain more accurate values for the roots. For example, for 

k = i the greatest error given by the formula (2.11) for Re a, and Im as res- 
pectively is 114 and Ho for 1.5 s y < 2, 0.3% and 0.5% for 2 < y Q 2.3, 0.1% 

and O.l?!o for 2.3 < y < 4. Moreover, as we see from (2.111, when y = ‘yz 
the quantity Re ask undergoes a jump of x / 2 and Im %P, - 00 as Y -y,,. 

We note that, as the parameter y changes continously from 1 to y* and from 
00 to v* , the roob ak of the fomdas (2.7) +!. 9) and (2.14), (2.15) rc%pIbh 
ely become the roots ok of the formulas (2. lo), (2.11). The same is true for the 
root a0 in (2.8) and (2.13) when y changes from zero to one. It is not however 
true for the roots ok, k # 0 of the formulas (2.71, (2.9) and (2.121, (2.131, since 
the latter have multiple points which are the branch points of the spectral curves of 
(2.1). 

3. Analysis of the penetratipg solution. Aswe know, in 
the theory of bending of unstressed plates the components of the biharmonic solution 
and the stresses defined by these solutfons are expressed in terms of the corresponding 
flexure of the middle plane, the flexme being a biharmonk function. In the present 
problem the components of the penetrating solution can also be expressed in terms of 
the corresponding flexure of the middle plane which sattscles the equation (1.8). In- 
deed, (1.5) yields the following representation for the flexure w. of the middle plane 
corresponding to the penetrating rohrtion: 

Do = hyX* + h%co-‘$U 12 sin a0 - (1 + v”) y-1 sin a,y- 

(~oW”D”X* + xs + 
h2M I(1 + ys) cos a, - 2f cos soy - ao”lW1l +Dsxs 

X* = &xl + Qzc M = ab (1 - y2)-’ cos a, 
, 

(3.1) 

where the functions Xk* k = 1, 2, 3 are arbitrary solutions of (1.8). Let us put 
in (3.1) 

Xl = bi$x, xz = b&x, xt = x + gD2x 

b = ;i; znz; [(i + y2) cos ct(, - 2y2 cos a,,yJ-l, g = - $. 

where X is a function satisfying the equation (1.8). 
We see that W. = x, i. e. the flexure of the middle plane also satisfies the 

equation (I.. 8). Thus we see that by performing the above substitution in (1.5) we 
arrive at the formulas expressing the displacement components and the function p 

in terms of the flexure of the middle plane 

ut = -hy54wo + haytAo (%)W2wo @=I, 2) 

w = w. + TLZB, (5) D2wo: p = hh” Co (6) D2wo 
(3.2) 
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A, ((J) = aop2L fy, a,) I(1 + y2) R(a0yS, 1) cos a0 - 2Rf%C, Y)CQS a0yl 

BCA 3 == k&-L (y, a*) rzya cm a,y (1 - cos a0 j> - (I f f) ws a, x 
(1 - cos %Yl;)l 

co (Cl = (Y%Y-' w - I) cos a$) L fy, CL@) sin a* yj 

L (y, a*) = [(I -+ y2) cos UQ - 2f cos 010 yl-’ 

R (Lc, y) = y” + 2-l sin 2 

It can be canfirmed that as y -+ I , the relations (3.2) are transformed into the 
corrqAnding formulas of f23. 

Using now (1. 11, we write (3.2) in tmrns of the coordinates of the initial deform- 
ed state y&. We obtain 

where A denotes a ~~~rn~~~ Laplace operator in y, and y,. The formug- 
as (3.31 show that the lower ordkl: terma in h in the expre&on for the dtq@cemantt 
carrespond ta thy Kirchboff’r k&ematic hypotheses appeadng in the mtrk of the in- 
itial deformed state. 

Let us now compare the mation of flexure of tie middle plane 

with the Saint Verunt equation of the tzlaskal tbxy of stabi%ty of a plate [lo.& Re- 
placing in (L4) R by -% y and expanding the right hand &de into a series in 1 - 

r”l we obtain 

+ (1 -Y’)[1 -l-+-(1 - Y2) 3--j-(1 - y2y + +ga)s+. . .] 

from which follows 

Using (2.8) we find 

and ~~~~~g (3.5) into (3.4) we obtain 

+ G (2h)a D’wo - ZhuDawi, - 
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For a plate made of an incomp~ible material, the cylindrical rigidity is equal 
to G Wr.)3 f 3. Consequently the classical Saint Venant equation hdds with the 
accuracy of up to terms of order (o / G)‘. 

REFERENCES 

1. L u r ’ e A. I. On the theory of thick plates. PMM VoL 6, No. 2 -3, 1942. 

2. L u r * e A. I. Three dimensional Problems of the Theory of Elasticity. Moscow, 
Gostekhizdat, 1955. 

3. Aksentyan 0. K, andVorovich 1.1. Thertateofstress in a thin 
plate. PMM. Vol. 27, No. 6, 1963. 

4. Z u b o v L. M. BuckIing of plates made of neo-Hookean material in the case 
of affine initial deformations. PMM Vol. 34, No. 4, 1970. 

5. L e v i t a n B. M. Almost Periodic Functions. Moscow, Gostekhizdat, 1953. 

6, L e v i n B. Is. Distribution of Roots of Entire Functions. (English translationf, 
American Ma~rna~~l Society, Providence, Vol. 5, 1964. 

7. P o t a p o v V. P. On the divisors of an almost periodic polynomial. Sb. tr, 
Inst. matematiki Akad. Nauk SSSR, No. 12, 1949. 

8. Vainberg M. M. andTrenogin V. A. ThtoryofBranchingofSolnt- 
ions of Nonlinear Equations. Moecow, “Nwka”, 1969. 

9. Sidorov III. V., Ftdoriuk M.V. andshabunin M. I. Lectures 
on the Theory of Functions of Complex Variable. Moscow, “Nat&a”, 1976. 

10. T i m o s h e n k o S. P. Stability of Elastic Systems. Moscow, Gostekhizdat, 
1955. 

Translated by L. K. 


