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Symbolic methods [1, 2] are used to construct homogeneous solutions for the
problem of bending of a plate previously deformed in its plane. A model of
neo —Hookean material is employed, and this is found useful in describing
resin-like materials, Inspection of the characteristic equation shows that a
preliminary application of a load changes substantially the character of the
spectrum of the homogeneous solutions. Analysis of the penetrating solution
which is an analog of the Lur'e's biharmonic solution in the theory of unstress-
ed plates, attests the validity of the Kirchhoff's kinematic hypotheses for a
thin plate and of the classical Saint Venant's equation of stability of plates
under the condition of small initial stresses,

The homogeneous solutions obtained can be used, with the help of the asymp-
totic method [3] to investigate, in particular, the problems of stability of thick
plates when the conditions specified at the side surface are arbitrary,

l, Constructing the homogeneous solutions Letuscon-
sider a plate made of an incompressible neo —Hookean material subjected toan inftial
deformation of the form

V= Axy, yp = Az, Y3 = A'zy (L.3)

where A is a constant and  zy, Yx (k = 1, 2, 3) are Cartesian coordinates before
and after the dermormation respectively, Such a deformation is realised in a piate
of arbitrary form, in its plane, when its side surface is under a uniform load, A small
bending deformation is superimposed on this deformation, and the bending deformation
is described by the following equations [4}

Dy +upr+Ap=0 (i=1,2) (1.2
D*w 4+ wr 4 A%’ =0
Ouy + Opuy + A’ =0, D® =92+ d?

Here u,;, u; and w are the components of the vector of additional translational dis-
placements in the x;, &,, Z3 = 2z  coordinate system.; a prime denotes differen-
tiation with respect to z; g; (i = 1, 2) is the differential operatorin z; and p
$s an unknown function of the coordinates appearing as a result of the incompressibil-
ity of the material, The last equation of (1.2) expresses the condition of incompress-
ibility.

The boundary conditions at the faces z = -+ % of the plate express the absence
of an additional load and have the form [4]
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u' +A%w =0 (i=1,2), 2w +Ap=0 (2.3

In deriving (1.2) and (1. 3) it was assumed that in the {nitial homogeneous deform-
ed state the stress 0, = (. The stress acting in the plane of the plate is given in
terms of the coefficient A by the formula ( G is the shear modulus of the material)

g =G(A — A9 (1, 4)

U v

Integrating the system (1.2) with boundary conditions (1.3) with help of the symbol-
ic method [1,2], we obtain the following expressions for the displacement components
and the fuaction p:

S 3 3
uy = ZAH:XK (t=1,2), w= ZBka, p= ;Cm (1.5)
1

k=1 k=1

Here Ay, By, Cx (i =1,2;k =1,2,3) are the differential operators of in-
finite order in  x;, x; with constant coefficients, and ¥;, X3, X3 denote an arbitr-
ary triad of solutions of the equation Qy = 0 where Q is the operator determinant
of the problem (1.2), (1.3). The operators @, A, Bx and C, aregivenbythe
following expressions (y = A~3):

Q = hD?Q, cos hD

Ay = bz (D*AyQ; + 7vV*0*T), Ay = h21,v%0,0,T

Az = 291701852 (12813825 — 28544,5)

B, = hy,v0,8,3 (281,844 — 284,44)

By = %18;5 (1281285, — 2v%4444,,)

Cy = —2hzy*h0,D*A}1A4445, C3 = —29A7a DA%, A5

Oy = =71 (12241285 — 47v*85,4y), 7= (1 —¥9)!

Yo =1+ 9 T =24, (A138;5 — 2455A135) + 1381384,845
Ay, =PhD,n/2), Ay=P(n,hD), A3 =P (zD,n/2)
Ay =P (n,zD), Ay = P (hyD,n/2), Ay = P (n, hyD)
A3 = P (zyD, n [ 2), A, = P (m, zyD)

P2,y) =z 'sinzxr + cosy

and Ay, B, and C, canbe obtained from A,;, B, and C, by making the

substituion 9, ~4,.
We note that when <y — 1, i e. when the initial deformation is removed, the

operator Q becomes an operator determinant of the theosy of bending of an unstress-
ed plate [1] (where Poison's ratio should be made equal to 1/, since the material
is incompressible).
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We seek the solution of the equation Qy = (0, asin[1], in the class of funct-
ions satisfying the Helmholtz equation
a2
D= x=0

We use the following equation to determine the corresponding values of the para-
meter o :

2 8i i
S oo S o 820 a

and, in what follows, we shall call it the characteristic equation, In the limit as
y — {, this equation becomes the known equation [1]

2a2cos @ (1 — s‘;:a ) =0 (m
Obviously the zeros of the cosine 0y = n (2t —1)/2,¢ =0, 1, +£2,.
...y are roots of both (1.7) and (1.6). However, if (1,7) has a quadruple zero root,
then for (1, 6) this root will only be a double root, Below we shall show that equation
(1, 6) has two nonzero roots differing from each other only by the sign, both tending
to zeroas ¢ -—>1 , bothreal when O < y <1 (pretensioned plate), and both
pure imaginary when 1 <y <1y, = 3.383 (precompressed plate), The value
Y = Vs is a singularity, and the roofs tend to infinity along the imaginary axis as
Y = 7, - Let us denote the roots belonging to the closure of the fimst quadrant of
the complex plane by «,. Then the other root will be — &,. We denote the re-
maining roots of (1.6) by @,, ¢ = 1,2, 3 ,... (the method of numbering to be
given later), Since the roots are distributed symmetrically over the complex plane,
it is sufficient to consider the solutions of (1. 6) found in the first quadrant, Since there
are three groups of roots of the characteristic equation, we can construct in the probl-
em under consideration, three types of homogeneous solutions,
The penetrating solution. Asumingin (1.5) yx; = ¥, = 0,

%s = — P, where the function ¥ satisfies the equation
a2
D%~ 'F;'Dz‘l“':o (1.8)

we obtain the following representation for the penetrating solution:

u; = hylop + 1°A (}) :D% (i =1, 2) (1.9)
w = —¢ + 1B () D%, p = hC (}) D>
A () = ae”'M [(1 + ¥*) cos a, sin a,y —
2y cos a, 18in @y L] — pa,-2L
B (L) = M [(1 + v*) cos a, cos a, y¢ — 2y cos a, 7 cos aotl + g2
C (8) = Aa~1y (1 + ¥2) cos o sin agpf, M = o2 (¥* — 1) cos e,
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Here { = z/h isa dimensfonless transverse coordinate, We note that when
v— 1, the equation (1. 8) becomes biharmonic,

The vortical solution. Ifthe function B, (z,, z,) satisfies the
equation

83
Da.Bt“-,-:-,-B,zf), t:i,2,3,.'.

then, using (1.5) we can write the vortical solution in the form

]

1 = h"’z F,Q) 0B, us=—htY F,0)%By w=p=0  (L10)
[0 wal

F (D) = 4y (— 1)1 (1 — v%)7%0,® cos 0,7 sin 04

Potential solution. Asumingin(lL5) )3 = — Coq/cos @y Y=
%2 = 0 where the function C, (z;, 7,) satisfies the equation

o
DSCQ“'ws"Cq:O' q=1,2,3,oo.
we obtain the following representation for the potential solution;
ay=h 3} H,R)8Cq (i=1,2) (1.11)
g=1

w=—h QM )Cq p=h13] N, })C,
qu=] Qqual

Hy (3) = viag? [(1 + 7°) cos &g sin agyl — 27 cos agy sin a,tl
My (D) = v, [(1 + %) cos aq cos agpl — 2y* cos &gy €08 &,fl
Ny (D) = hag(1 + v*) cosagsinagyl, n=01—9)"

Below we shall show that the set of all potential solutions (1, 11) can be separated
into two subsets, The solutions belonging to the fimst subset have no analogs in the
theory of unstressed plates, while the following assertion holds for the second subset
as well as for the penetrating (1.9) and vortical (1.10) solutions: whea y — 1, the
above solutions become the potential, hiharmonic and vortical solutions, respectively,
of the theory of unstressed plates, with the Poisson’sratio equal to 1/, [1].

2, Investigation of the characteristic equation, We
reduce the characteristic equation (1. 6) to the form (2. 1) or (2.2)(neglecting the
factor a? cos @)

P, (y)sina (y+1) + Py(y)sina (y —1) =0 (2.1
P=(0—3¢—7—0/C¢*+2v P.(=P (=7
P, (y) leiatvin) _ g~iacva)] 4 P, () [eix@v-1) — g-ia(¥-D] = 0 (2.2
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Since the value y <{ 0  has no physical sense, it is sufficient to consider the equat-
ion(2.1) for 9 > 0. The exponential multiplier in the left hand side of (2.2) is
an almost periodic function with a bounded spectrum [5]. Hence the set of roots of
(2.2) has the following properties:

1) for every fixed ¥ % 1 all roots lie in the strip| Im & | < Cy, Cy = const;

2) forevery ¢ =& { the set of roots forms an almost periodic point set;

3) the following representation holds for the roots;

ax=nk(+ P+ ¥ k), k=0, £1, +2, ... (2.3)

where ¥y (k) is a bounded function assuming complex values.
It can be confirmed that when 9 = r /s is rational, then all solutions of (2,2)
can be written in the form

Arankem = —3/o8i ln' [ I + Yysarg t, + n ks (2.4)
m=012..,r+s—1; k=0, +1, +2, ...

where ¢, are solutions of the equation
Po(r/s)tss 4+ Py(r/s)t" — Py (r/s)t*—P,(r/s)=0 (29

Thus, in the case of rational Y the set of solutions of (2, 2) separates into a finite
number of series. It was established in [7] that this also occurs when v are irrational,
and from the geometrical point of view it makes more sense to carry out the numbering
according to the series, asin (2,4), than in the order or increasing real parts as in
(2.3).

Theorem 1. When ¥ 3%1, Eq. (2.1)has an enumerable set of reat roots,

Proof, When y isrational, the assertion is obvious, since equation (2, 5) has
aroot t =1 forany rand s, If vy isirrational, then it is sufficient to con-
sider the function f(y,a) = P, (y)sina (y+ 1) + Py (y)sina (y — 1)
on the sequence of points of the real axis @ = nk (y — 1), k=1, 2,3....
We have f (vs ax) = Py (y) (— 1)¥sin. [2nk (y — 1)7]. Since 'y is
frrational, the quantity 2n (y — 1)1 cannot coincide with any of the sine periods.
Therefore it can be shown that the change of sign in the sequence f(y, a;) takes
Place an even number of times, Since the function f (y, @) is continuous, it has
an enumerable set of real zeros.

p (Tt;e value v, mentioned above represents a unique real zero of the function
1Y)

Theorem 2. If O <y <1 (caseof pretension) or p > v, (caseofa
strong, or a very strong precompression), then equation (2, 1) has no purely imaginary
roots, If 1 <<y<< 7s (case of a moderate precompression), then (2. 1) has two
purely imaginary roots differing only in sign,

Proof. The problem of whether (2. 1) has purely imaginary roots can be reduced
to that of elucidating the existence of real roots of the equation
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o, v)=0(® (2.6)
¢ (z, y) = th (yz) th7'z, O (v) = 4y* (1 + 1))

We have @x = (7 sh 2z — sh 2yz) / (2ch® yz sh?z).

It can be established that @, (z,7) <O when p >1 and®x (%, y) >0
when ¢y <C1. Consequently, if y > 1, then ¢ (z, y) decreases monotonously
from y to 1 as z increases from zero to oo , and increases monotonously from

Y to 1 when y<<1 ., It can further be shown that for every ¥ > 0 the inequal-
ity @ (y) <y holds(the equal sign applies when 7y = 1). Since ¢ (z, y) >
y when v<<1 and z >0, and @ (y) < y, the equation (2, 6) has no posit-
ive zeros when y << 1 (and by virtue of the symmetry of ¢ (z,y) inax , ithas
no negative zeros either). Moreover, computing the derivative @’ (y) we can con-
firm that @ (7) increases monotonously in the interval 0 <<y << /3 and de-
creases monotonously in the interval }'3 <<y << oo . The equation @ (y) = 1
hastworoots, Y =1 and y=7,. Since @ (z,y) > 1 when y > 1, there-
fore (2. 6) has no real roots when vy >9,. For 1 < y <<y, wehave 1 < @ (y)
<< y. Since the function @ (z, y)decreases monotonously from ¥ to 1, the equation
(2.6) has a single positive root. Thisimplies that (2, 1) has, for { << p<< y, exactly
two purely imaginary roots differing only in sign.

Corollary, If 1 <y<vy,, thenEq, (2.1)hasan enumerable set of
complex roots, The proof follows from the exitence of purely imaginary roots and the
property (2) of the set of roots of (2.1).

We note that the appearance of purely imaginary roots of the characteristic equat-
ion when the plate is under initial compression, is not accidental, Since the imagin-
ary roots generate homogeneous solutions oscillating with respect to the coordinates

z; and 7: and they do not decay, if follows that the plate compressed in its plane
can lose its stabflity through bending. The special value A, = yg'/* of the initial
deformation parameter appearing in the previous discussions coincides with the magni-
tude of the initial compression under which an arbitrarily thick plate with a sliding
clamp along the side surface will lose its stability [4].

We shall call the value y, of the parameter y the multiple point of (2.1), provi-
ded that (2, 1) has repeated roots at vy = vy, .

Theorem 3. If y is abitrary, Eq, (2. 1) has no roots of muitiplicity higher
than two, If 9 >>1, then(2.1) has no double roots either. The set of muitiple
points of (2.1) is an enumerable subset of the segment [0, 1], is dense everwhere and
coincides with the set of all zeros of the functions ¥, ; (v)

Yo.x()=(@— 1) arccos g; + (v + 1) arccos ¢, + 21 (ky — m)

¥+ 1 S ke ot S k m|, km >0
a=—minEm 4 GonAwm e HZImk e

where k and m are integers, on the segment [0, 1) Every function Wm,x (V) is
monotonous on this segment and has on it a unique zero VYm, x for which the following

inequality holds:
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4imi4-3
Tk <'Vm,k<—4—'kr~“

Every multiple point Y, , has a corresponding pair of real double roots =, 4,
Gm, x > 0. Using the perturbation theory [8] we can obtain a solution of (2. 1)
near the point (Ym,x) ®m, &)

o= 0n, =t cb'/s, § = Y = Ym, k
@m,x = (1 + Tm, )" sign (k) [x (k + m) + arccos g, (Ym, x)]
c={2(1 — Vo, 00 [am, xLy (Ym, n)sign (}) + L, (ym, )1}

o 1 4 2 - 2y{t—2v2—3)
LIW)—W: Lz(v)——'v“—-ﬂ'y‘—f’)?ﬁ—i

The proof is omitted,

In studying the asymptotic behavior of the roots of (2, 1) at the points y = 1,
Y= %% ¥ =0, y = oo, itisexpedient to adopt a method of numbering the roots
different from that used in (2.3) or(2.4). We have the following asymptotic formul~
as, For the case p—1 we have

Gy (V) =k (p— ) + e (), k=123, .. (2.7

where g, () is a bounded function, without a limitas  y-» 1. The potential
solutions corresponding to the roots @exy have no analogs in the theory of unstress-
ed plates, and they have no imit values when y — 1 .

Using perturbation theory [8] we obtain the following formulas:

0o =(1— vy 3 Ax(1— ) (2.8)

A, =V3/2, A, =13V3180, A, = 4241)/3/ 44800,

O = O A (VP — 1), £k=1,2,3,... (2.9
Nanl) .

Ah = —BkAm / 4, Ah = 9{‘/1;., (12 + igtkz + Gtk‘) /48
Aka = Gk’zA,,o (tklo + Stk‘ — 5tk’ -_ 53tk‘ ——— 71 tkﬁ — 27) [ 192
B = 1 + 1,2

Hete Ayo are theroots of the equation sin 2o = 2a, #; = ctgd,,. We can
find Ayo using the asymptotic formula given in [9]. Moreover we can show that
the following recurrence relations hold for the coefficients Ay and Ay, :

) k-2
3 - 4 2 1 § ‘

Ak-l = 'y Aol {-—- 3 AnAk-u~}. + -y An (Mk—ﬂ-z‘!'Ak-ﬂ*!) -
==l Tiz=()



1010 L.M. Zubov and AN, Rudev

an 2("' 1)’ Bk-n—r,ncmr]v k > 3

Agn = by 2 b, [stca,o + 2 B:‘v-r.a n,r]v n>1, k>1
80 ir=1

Corr = — ‘5?‘ PV DV + Dt + P (VO (VT — 1)1 o
b"= _._(:-._12.'.‘__., Ba,n= A{IA,{,...Aq
@n+ 1)l irbirt.. 4 "
" seafrly, s
= — Ago(Asin? Ayo)?, BE,= X AxiAxis. - - 4
Br xo (48in? Ayo) s i;+ir§-%'+iu-n kir/ 2kl Ty
Bﬁ:s = 2 AmAki- v Aki”

irpirt. iy =n; 740, r=l,, .. 28

We note that @, —(Q a8 y-— 1, theroots &, isrealwhen Y <<1 and
purely imaginary when y > 1 . Further, im gy = A, as y— 1, i.e. the
potential solutions corresponding to the roots *sx become, as y—> 1 , the potent-
ial solutions of the theory of unstressed plates.

Numerical analysis shows that the error given by the formula (2, 8) when three co~
efficients are taken into account on the segment  0.55 <C y < 1.35 , does not ex-
ceed 0.5%. For k = 1,2 the formulas(2,9)(also with only three coefficients
taken into account) gives an error not exceeding, at 08 <y << 1.2, 0.5%
for the real part and 3% for the imaginary part, ‘

Case P—v,

ke = © (wk — g sin 25k ©) + 0 (¥ — yo)t © = (y—1) (2,19

=1,2,3, ..., ...
ax = 1k — Yy (In) g | — B +- 0 (| v — 7. P*), y<7v, (21D
Ay = N (k + Yy) — Y4i (In |q| — Bein(zm)v) + O (7~ va [r+-2)

Y>> Vs
B=(¢—1)|g k=0,1,2,..

Case y—0
Gapy = V' Ink + 051 — QI + O (¥), k=1,2,3, ... (2.12)
Gy =n (k4 )+ (g — DIk + 1) nvyI + 0 (¥, k= (2.13)
0,1,2, ..
Case y— @
(2.14)

Cogy = WY 2 (Y +1—@+0G™, £=1,2,3, ...
O = 7 (k -+ Y3) + vux(v), k£=0,1,2,.. (2.15)
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where iy (y) is a bounded complex function and p; (y) =G when y— oo.
In the formulas (2. 10) —(2,15) we have g = P, () / P, (y).

The asymptotic formulas (2, 10) —(2, 15) give good accuracy and can be used as
starting approximations to obtain more accurate values for the roots, Forexample, for

k = 1 the greatest error given by the formula (2.11) for Rea, and Im a, res-

pectively is 1% and 2% for 1.5 < ¥ < 2, 0.3% and 0,5% for 2 <7< 2.3, 0.1%
and 0,1% for 2.3 <y < 4.. Moreover, as we see from (2,11), when y =y,
the quantity Re a,; undergoesajumpof n/2 and Imog —oco as y—y,.

We note that, as the parameter y changes continously from 1 to y, and from
o to 7y, , the roots oy of the formulas (2,7) —(2, 9) and (2. 14), (2. 15) respectiv-
ely become the roots a; of the formulas(2,10), (2,11). The same is true for the
root a, in(2.8) and (2.13) when ¥ changes from zero to one, It is not however
true for the roots «;, k == 0 of the formulas (2, 7), (2. 9) and (2. 12), (2, 13), since
the latter have multiple points which are the branch points of the spectral curves of
(2.1).

3, Analysis of the penetrating solution, Aswe know, in
the theory of bending of unstressed plates the components of the biharmonic solution
and the stresses defined by these solutions are expressed in terms of the corresponding
flexure of the middle plane, the flexure being a biharmonic function, In the present
problem the components of the penetrating solution can also be expressed in terms of
the corresponding flexure of the middle plane which satisfles the equation (1.8). In-
deed, (1.5) yields the following representation for the flexure w, of the middle plane
corresponding to the penetrating solution:

wo = hyyy + FPoyM [2sin @y — (1 + ¥*) 97! sin a,p— (3.1)
(aoM)-l]D2X* + xa +
M [(1 + v?) cos @y — 22 cos @y — @2 M. D2y,
Xe = O1)fs + OsXey M =a,?(1 "\'\’2)-1 €O0S Gy
where the functions Xx» % = 1, 2, 3 are arbitrary solutions of (1,8). Let us put
in (3.1)

xi = bdyx, Y2 = bay, %xs = % + &D*x

- ) y
b= 2};§; sinvt:z [(1 + ") cosao — 2y cosaoy]™, g = — o

where X is a function satisfying the equation (1. 8).

We see that w, = ¥, i.e, the flexure of the middle plane also satisfies the
equation (1.8), Thus we see that by performing the above substitution in (1, 5) we
arrive at the formulas expressing the displacement components and the function p
in terms of the flexure of the middle plane

u; = —hytow, + h*y%4, (£)d,D*w, i=1, 2 (3.2)

w = w, + KB, (Y) D*w,, p = kA~ C, (L) D2w,
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Ao (D) = ao 2L (v, o) [(1 + %) RlaoyE, 1) cos @y — 2R(atsE, Y)cos aoyl
Bo(S) = a2 L (y, oto) [29% cos agy (1 — cos ay &) — (1 + %) cos &y X
(1 — cos aeyd)]
Co (£) = (yao)™ (y* — 1) cos ag L (¥, @) sin a, p§
L (y, &) == [(1 + ¥*) cos @y — 29* cos &y 1™
Riz,y) =y + ctsina

It can be confirmed that as y — { , the relations (3. 2) are transformed into the
corresponding formulas of {2],

Using now (1, 1), we write (3. 2) in terms of the coordinates of the initial deform-
edstate Y. We obhain

= — By gt AL A (020 5= Ao, i = 1,2 (3.
W == W, + }I?Bg (}ug;*) ”Awm p = Co (sz;,)tlwo, g* = Ua ;’h

where A denotes a two-dimensional Laplace operator in y, and y,. The formul-
as (3,3) show that the lower order terms in % in the expression for the displacements
carrespond to the Kirchhoff's kinematic hypotheses appearing in the metric of the in-
itial deformed state,

Let us now compare the equation of flexure of the middle plane

D‘WQ — %’;; Dzwo =0 (3.4)

with the Saint Venant equation of the classical theory of stability of a plate [10], Re-
placing in (1.4) A by y™* and expanding the right hand side into a series in 1 —
¥%:  we obtain

==+ =+ =+ 5 a—rP+ ]

from which follows

...2-..5‘...._..3._.5’_..
l—v=7 +27 G*+

Using (2. 8) we find

=g+ arwt w (®.5

and substituting (3, 5) into (3.4) we obtain
+G (2h)3 D*wo — 2ho Dw, —

107 ot
% 19+ o+ ) Dwe=0
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For a plate made of an incompressible material, the cylindrical rigidity is equal
G (2h)* ] 3. Consequently the classical Saint Venant equation holds with the

accuracy of up to terms of order (0 / G)%

3.

4.

9.

10,
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